m
 6.9

Adding and Subtracting Fractions

Multiplication Rule

To find a fraction equivalent to a given fraction, multiply the numerator and the denominator of the fraction by the same number.

Example 1: $\frac{4}{9}-\frac{1}{3}=$?
$\frac{1}{3}=\frac{2}{6}=\frac{3}{9}=\frac{4}{12}=\frac{5}{15}=\frac{6}{18}=\ldots$
9 is a common denominator.
$\frac{4}{9}-\frac{1}{3}=\frac{4}{9}-\frac{3}{9}=\frac{1}{9}$

Example 2: $\frac{5}{8}+\frac{2}{5}=$?
$\frac{5}{8}=\frac{10}{16}=\frac{15}{24}=\frac{20}{32}=\frac{25}{40}=\frac{30}{48}=\ldots$
$\frac{2}{5}=\frac{4}{10}=\frac{6}{15}=\frac{8}{20}=\frac{10}{25}=\frac{12}{30}=\frac{14}{35}=\left(\frac{16}{40}=\frac{18}{45}=\ldots\right.$
Both fractions can be rewritten with the common denominator 40.

$$
\frac{5}{8}+\frac{2}{5}=\frac{25}{40}+\frac{16}{40}=\frac{41}{40}, \text { or } 1 \frac{1}{40}
$$

Find a common denominator. Then add or subtract.

1. $\frac{2}{3}+\frac{4}{5}=$
\qquad 2. $\frac{8}{9}-\frac{5}{6}=$ \qquad 3. $\frac{3}{4}+1 \frac{1}{2}=$ \qquad
2. Lisa was 4 feet $10 \frac{1}{2}$ inches tall at the end of fifth grade. During the year, she had grown $2 \frac{3}{4}$ inches. How tall was Lisa at the start of fifth grade?
\qquad feet \qquad in.
3. Bill was baking two different kinds of bread. One recipe called for $3 \frac{1}{2}$ cups of flour. The other called for $2 \frac{1}{3}$ cups of flour. How much flour did Bill need in all?
