STUDY LINK

Division

Here is an example of the partial-quotients algorithm using an "at least...not more than" strategy.

$8 \longdiv { 1 8 5 }$		Begin estimating with multiples of 10.
-80	10	How many 8 s are in 185 ? At least 10. The first partial quotient. $10 * 8=80$
105		Subtract. 105 is left to divide.
$\begin{array}{r} -80 \\ \hline 25 \end{array}$	10	How many 8 s are in 105 ? At least 10. The second partial quotient. $10 * 8=80$ Subtract. 25 is left to divide.
-24	3	How many 8 s are in 25 ? At least 3 . The third partial quotient. $3 * 8=24$ Subtract. 1 is left to divide.
1	23	Add the partial quotients: $10+10+3=23$
\uparrow	\uparrow	

Remainder Quotient Answer: 23 R1

Solve.

1. $639 \div 9$
2. $954 \div 18$

Answer: \qquad Answer: \qquad
3. $1,990 / 24$

Answer: \qquad
4. 972 / 37

Answer: \qquad
5. Robert is making a photo album. 6 photos fit on a page. How many pages will he need for 497 photos? \qquad pages

Practice
6. $2,746+68=$ \qquad
Check: \qquad - \qquad
\qquad
7. $3,461-165=$ \qquad
Check: \qquad $+$ \qquad
\qquad

